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1. Transformations of a Vector Space

Let V be a finite dimensional vector space of dimension n. Let T : V → V be
a linear transformation. Transformations of this type (from a vector space into
itself) are particularly interesting because they can be composed with themselves.
Let A be the corresponding matrix; then composing T with itself corresponds to
taking powers of A. Also, T is an isomorphism if and only if A is invertible. In
this case, we think of T as a warping of n-space.

Let A be an n× n matrix given by A = (aij)ij .
We say that A is singular if it is not invertible.
We say that A is scalar if it is of the form aI, where λ ∈ R and I is the n× n

identity matrix. This has the effect on n-space of dilating it by a factor of a in
every direction.

We say that A is diagonal if all of its nondiagonal entries are zero, that is, if
aij = 0 whenever i 6= j. This has the effect on n-space of expanding the ith axis
by a factor of aii.

We say that A is upper triangular if aij = 0 whenever i > j.
We say that A is lower triangular if aij = 0 whenever i < j.
We say that A is triangular if it is either upper triangular or lower triangular.
If A is triangular and invertible, then A can be reduced to a diagonal matrix

by a sequence of row operations of type Ri + cRj .
The process of Gaussian elimination shows that a matrix A is invertible if

and only if it is the product of elementary invertible matrices. Such a product
is definitely invertible. On the other hand, if A is invertible, we may find its
inverse by row reducing the equation AX = I to obtain X = U , where U is
the product of the matrices corresponding to the row operations we used. To
examine this more closely, note that if A is invertible, then for any b ∈ Rm, there
is a unique solution to the equation Ax = b, namely x = A−1b, and this solution
can be found by Gaussian elimination. In particular, if xi is the unique solution
to Ax = ei, then A−1 = [x1 | · · · | xn].

Thus if A and B are invertible matrices, we see that AB is invertible if and
only if both A and B are invertible.
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2. Multilinear Functions

Let V be a vector space and let V m denote the cartesian product of V with
itself m times; this is the set of all ordered m-tuples of vectors from V .

A function f : V m → R is called multilinear if it is linear in each of its
coordinates; that is, if

f(v1, . . . , vi−1, vi + wi, vi+1, . . . , vm)

= f(v1, . . . , vi−1, vi, vi+1, . . . , vm) + f(v1, . . . , vi−1, wi, vi+1, . . . , vm);

and

f(v1, . . . , vi−1, avi, vi+1, . . . , vm) = af(v1, . . . , vi−1, vi, vi+1, . . . , vm).

Let f : V n → R be multilinear and let X be a basis for V . Then the value of
f is completely determined by the values of f(xi1 , . . . , xim), where the xi’s range
over all ordered choices of m basis vectors.

A function f : V m → R is called alternating if exchanging positions changes
the sign; that is, if

f(v1, . . . , vi, . . . , vj , . . . , vm) = −f(v1, . . . , vj , . . . , vi, . . . , vm).

Let f : V m → R be alternating. Suppose that two positions of an n-tuple are
the same, say vi = vj . Then switching them gives the same value for f ; but it
must also give the negative value, since f is alternating. Thus f(v1, . . . , vm) = 0
whenever two postions are the same.

Example 1. Let V = R2 and let f : R2 → R be given by f(v, w) = ad − bc,
where v = (a, b) and w = (c, d). Then f is an alternating multilinear function.

Note that f(e1, e2) = 1 · 1− 0 · 0 = 1.

Let V be a finite dimensional vector space of dimension n = m and let f :
V n → R be an alternating multilinear function. Let X = {x1, . . . , xn} be a
basis for V . Then f is completely determined by the value of f(x1, . . . , xn). To
see this, pick an arbitrary ordered n-tuple (v1, . . . , vn). Write each of these as a
linear combination of the vectors in X. Use multilinearity to break f(v1, . . . , vn)
into a sum of things of the form f(xi1 , . . . , xin

). Use alternation to rearrange
this into a sum of things of the form ±f(x1, . . . , xn).

A function f : V m → R is called normalized with respect to an ordered basis
{x1, . . . , xn} if m = n and f(x1, . . . , xn) = 1.

Proposition 1. Let V be a vector space of dimension n with ordered basis X.
Then there exists a unique alternating multilinear function

f : V n → R
which is normalized with respect to X.

Idea of Proof. First one examines uniqueness. Suppose that f and g are alter-
nating multilinear functions. By using multilinearity and alternation, one sees
that the value of f and g on any order n-tuple (v1, . . . , vn) of vectors is com-
pletely determined by their value on the ordered basis. This is a single real
number. If the functions are normalized, then they must be the same.

Next one constructs a specific function which is multilinear, alternating, and
normalized. We will do this momentarily. �
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3. The General Determinant

Let Mm×n be the set of all m× n matrices. If m = n, shorten this to Mn.
A function f : Mn → R may be considered to be a multilinear function by

considering its rows to be the coordinates of V n, where V = Rn.

Proposition 2. There exists a unique alternating multilinear function

det : Mn → R,

which is normalized with respect to the standard basis. This function is called
the determinant function.

We now describe how to construct such a function; the construction is in-
ductive, which means that we construct the determinant of a 1× 1 matrix, and
then construct the determinant of an n × n matrix in terms of determinants of
(n− 1)× (n− 1) matrices.

Define the determinant of a 1× 1 matrix to be the identity function (since a
1× 1 function is merely a single real number).

Let A = (aij)ij be an n × n matrix. Assume that the determinant of an
(n− 1)× (n− 1) function has been defined.

Let Aij denote the matrix obtained from A by deleting the ith row and the
jth column. This matrix is called the ijth minor of A.

Let a′ij = det(Aij). This number is called the ijth cofactor of A.
To compute the determinant of A, select any row or column of A. For each

entry in the row of column, compute the cofactor of that entry. Then take the
alternating sum of these cofactors. This process is called expansion by minors.

If we choose the ith row to expand along, the formula is

det(A) =
n∑

j=1

(−1)j−1a′ij .

If we choose the jth column to expand along, the formula is

det(A) =
n∑

i=1

(−1)i−1a′ij .

It is tedious and somewhat uninformative, but not terribly difficult, to use
induction to show that this formula gives an alternating multilinear function
which is normalized with respect to the standard basis. We move on.
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4. Properties of the Determinant

Let det : Mn → R be the unique function with the properties
(a) Multilinearity
(b) Alternation
(c) Normalization

From these properties, one can show
(d) If any row of A is zero, then det(A) = 0;
(e) If any two rows of A are the same, then det(A) = 0;
(f) If one row of A is a scalar multiple of another, then det(A) = 0;
(g) If B is obtained from A by a row operation of type Ri + cRj , then

det(B) = det(A);
(h) If A is diagonal, then det(A) is the product of the nonzero entries;
(i) If A is triangular, then det(A) is the product of the diagonal entries.

Property (d) comes from multilinearity.
Property (e) comes from alternation, as we have already noted.
Property (f) is comes from multilinearity and (e).
Property (g) results from multilinearity and (e):

det[x1 | · · · | xi + cxj | · · · | xj | · · · | xn]

= det[x1 | · · · | xi | · · · | xj | . . . xn] + cdet[x1 | · · · | xj | · · · | xj | . . . xn]

= det[x1 | · · · | xi | · · · | xj | . . . xn] + 0.

Property (h) comes from multilinearity and normalization.
Property (i) comes from (g) and (h) by noting that any triangular matrix

can be obtained from a diagonal one by a sequence of row operations of the form
Ri + cRj .

We can now compute the determinants of the elementary invertible matrices.
• det(I) = 1 by (c);
• det(E(i, j; c)) = 1 by (i);
• det(D(i; c)) = c by (h);
• det(P (i, j)) = −1 by (b) and (c).

Since we know the effects of elementary invertible matrices on the rows of a
matrix A, we can compute the following products.

If E = E(i, j; c), then det(EA) = det(A) by (g).
If E = D(i; c), then det(EA) = cdet(A) by (a).
If E = P (i, j), then det(EA) = −det(A) by (b).
In each of these cases, we have det(EA) = det(E)det(A). Thus if U is a

product of elementary invertible matrices, its determinant is the product of the
determinants of the factors, and by sequential application of the above observa-
tion, we have det(UA) = det(U)det(A).
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From this analysis of the determinant for elementary invertible matrices, we
derive the following general properties.

(j) A is invertible if and only if det(A) 6= 0;
(k) det(AB) = det(A)det(B);
Let R = OA be the result of forward elimination on A, where O is the product

of elementary invertible matrices. Then det(R) = det(O)det(A). Indeed, since
forward elimination uses only E and P type matrices, det(O) = ±1, where the
sign is determined by the number of permutations used.

Since A is square, A is noninvertible if and only if R has a zero row.
Suppose A is noninvertible. Then R has a zero row, so det(R) = 0 by (d), so

det(A) = 0. If B is another matrix, then AB is noninvertible, so det(AB) = 0 =
det(A)det(B).

Suppose A is invertible. Then its determinant is the product of elementary
invertible matrices, so det(A) 6= 0. If B is another matrix, then det(AB) =
det(A)det(B), as we previously noted. This proves (j) and (k).

This also shows something more:
(l) det(A) = (−1)pq, where p is the number of permutations used in forward

elimination, and q is the product along the diagonal of R;
(m) det(A∗) = det(A).
We have det(R) = det(O)det(A). But det(R) = q, and det(O) = (−1)p. This

gives (l).
If A is invertible, then so is A∗:

(A∗(A−1)∗)∗ = A−1A = I = I∗,

so (A∗)−1 = (A−1)∗.
If E is an elementary invertible matrix, then det(E) = det(E∗). Suppose that

E and F are matrices satisfying (m), then

det(EF ) = det(E)det(F ) = det(E∗)det(F ∗) = det(E∗F ∗) = det((EF )∗).

If A is invertible, then A is the product of elementary invertible matrices, and
the result follows.

If A is not invertible, then neither is A∗ thus det(A) = 0 = det(A)∗. This
proves (m).
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5. Geometric Interpretation of Determinant

The n-box in Rm determined by the vectors v1, . . . , vn ∈ Rm is the set

{t1v1 + · · ·+ tnvn | ti ∈ [0, 1]}.
We define the n-volume of a box inductively by defining the 1-volume of a

vector to be its length, and the n-volume of the box to be the height of the box
times the (n − 1)-volume of its base, where the height is the distance between
vn and the span of {v1, . . . , vn−1}, and the base is the (n − 1)-box determined
by v1, . . . , vn−1. Let vol{v1, . . . , vn} denote this quantity.

If m = n, this definition of volume corresponds to the result we get by inte-
grating the box via multiple integration.

The orientation of an ordered collection of vectors is determined by the n-
dimension right hand rule. There are two distinct orientations (right and left
handed); interchanging two vectors in an ordered collection switches the orien-
tation.

The primary geometric interpretation of the determinant function is that
det(A) is equal to the n-dimensional signed volume of the box determined by
the columns of A, where A is an n × n matrix. The sign is positive for right
orientation and negative for left orientation.

This is the same thing as saying that det(A) is equal to the signed distortion
of volume induced by the transformation TA : Rn → Rn. That is,

vol(TA(X)) = ±det(A)vol(X),

where X is any set of n vectors in Rn; the sign determines whether or not the
transformation is orientation preserving or orientation reversing.

6. Linear Transformations as a Vector Space

We review some facts from the document “Linear Transformations”.
If S : V → V and T : V → V are linear transformations, then S + T : V → V

given by (S + T )(v) = S(v) + T (v) is a linear transformation.
If T : V → V is a linear transformation and a ∈ R, then aT : V → V given

by (aT )(v) = aT (v) is a linear transformation.
Thus the set of all linear transformation from V to itself is a vector space,

which we may denote by L(V ).
If we fix a basis for V , we may write S and T as matrices. Then AS+T =

AS + AT and AaT = aAT .
Since we may compose transformations from a vector space into itself, L(V )

comes equipt with a multiplication. We can write ST to mean S ◦ T . This
multiplication distributes over addition of linear transformations.

In particular, Tn denotes T composed with itself n times. If we denote the
transformation aidV simply by a, we can form and factor polynomials such as

L = T 2 − 4T + 3 = (T − 3)(T − 1);

thus L(v) = T (T (v))− 4T (v) + 3v.
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7. Eigenvectors and Eigenvalues

Let V be a finite dimensional vector space of dimension n and let T : V → V .
An eigenvector of T is a nonzero vector v ∈ V such that T (v) = λv for some

λ ∈ R. The number λ is called an eigenvalue of T .
That is, a nonzero vector v is an eigenvector of T if and only if T (v) is on the

same line through the origin as v, so T expands or contracts this line by a fixed
factor; the eigenvalue associated to v is this expansion factor.

Let A be an n×n matrix. The eigenvectors and eigenvalues of A are, by defini-
tion, the eigenvectors and eigenvalues of the corresponding linear transformation
TA : Rn → Rn given by TA(x) = Ax.

Proposition 3. Let T : V → V be a linear transformation Let v ∈ V be an
eigenvector with eigenvalue λ. Let a ∈ R. Then av is an eigenvector with
eigenvalue λ.

Proof. We have T (av) = aT (v) = aλv = λ(av). �

Example 2. Find the eigenvectors and eigenvalues of the linear transformation
T : R2 → R2 corresponding to the matrix

A =
[
2 0
0 3

]
.

Solution. Since T (e1) = 2e1 and T (e2) = 3e2, we see that these are both
eigenvectors with corresponding eigenvalues 2 and 3. Then all of the vectors
on the x and y axis are also eigenvectors. However, if v = ae1 + be2, then
T (v) = 2ae1 + 3be2 is a scalar multiple of v if and only if either a or b is zero.
Thus no other vectors are eigenvectors. �

Example 3. Find the eigenvectors and eigenvalues of the linear transformation
T : R2 → R2 corresponding to the matrix A = λI.

Solution. Every nonzero vector in R2 is an eigenvector with eigenvalue λ. �

Example 4. Find the eigenvectors and eigenvalus of the linear transformation
which rotates R2 by 90 degrees.

Solution. There are none. �

Example 5. Find the eigenvectors and eigenvalues of the linear transformation
which reflects R2 across the y-axis.

Solution. Eigenvalue 1 corresponds to eigenvector e1. Eigenvalue−1 corresponds
to eigenvector e2. �
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8. Eigenspaces

Let T : V → V be a linear transformation with eigenvalue λ. The eigenspace
of λ is the set containing zero and of all eigenvectors of T whose eigenvalue is λ:

eigλ(T ) = {v ∈ T | T (v) = λv}.

Proposition 4. Let T : V → V be a linear transformation and let a ∈ R.
Then eiga(T ) ≤ V .

Proof. Let T − a : V → V denote the linear transformation given by (T −
a)(v) = T (v) − av. Then v ∈ eiga(T ) if and only if (T − a)(v) = 0. Thus
eiga(T ) = ker(T −a). The kernel of a linear transformation is always a subspace
of the domain, so eiga(T ) ≤ V . �

The above proof points out that, in particular, eig0(T ) = ker(T ). We collect
some facts regarding this.

Proposition 5. Let T : V → V be a linear transformation.
The following conditions are equivalent:

i. T is an isomorphism;
ii. T is bijective;
iii. T is surjective;
iv. T is injective;
v. ker(T ) = {0};
vi. eig0(T ) = {0};
vii. 0 is not an eigenvalue of T .

Let T : V → V be a linear transformation. The total eigenspace of T is

eig(T ) = span{v ∈ V | v is an eigenvector of T }.
We now extend the concept of direct sum to more that one subspace.

Let V be a vector space and let U1, . . . , Un be subspaces. We say that V is
the direct sum of U1, . . . , Un, if
(D1) U1 + · · ·+ Un = V ;
(D2) Ui ∩ Uj = {0} whenever i 6= j.

In this case, we may write
V = ⊕n

i=1Ui.

Proposition 6. Let T : V → V be a linear transformation whose distinct eigen-
values are λ1, . . . , λn. Then

eig(T ) = ⊕n
i=1eigλi

(T ).

Proof. It is clear from the definition that the vectors in eigλi
(T ) span eig(T ) as

λi ranges from i = 1, . . . , n. Also, if v has eigenvalue λi, then it cannot also have
a different eigenvalue λj . Thus the intersection of two of these eigenspaces is
trivial. �
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9. Finding Eigenvalues of a Matrix

Let T : V → V be a linear transformation; for simplicity, let us assume for
the time being that V = Rn. To find the eigenvectors and eigenvalues of T , we
wish to solve the equation T (v) = λv, where λ is any real number. That is, we
wish to solve

T (v)− λv = 0.

Let us first try to find an appropriate λ.
If A is the matrix corresponding to T , then this equation becomes

Av − λIv = 0.

That is, we wish to find ker(A − λI) whenever it is nontrivial. This kernel is
nontrivial if and only if det(A− λI) = 0.

If we compute det(A− λI), we obtain a polynomial in λ. The degree of this
polynomial is exactly dim(V ). Thus we define the characteristic polynomial of
A (or T ) to be

χA(λ) = det(A− λI).
We see that λ is an eigenvalue if and only if χA(λ) = 0, because this is exactly
when (A− λI) has a nontrivial kernel.

Once one finds an eigenvalue λ, one can find the corresponding eigenvectors
by solving (A− λI)x = 0.

Example 6. Let T : R3 → R3 be the linear transformation corresponding to
the matrix

A =

 2 1 0
−1 0 1
1 3 1

 .

Find the eigenvectors and eigenvalues of T .

Solution. First we find the eigenvalues. The characteristic polynomial is

χA(λ) = det(A− λI) = (2− λ)2(1 + λ).

Thus the eigenvalues are 2 and −1.
Now we find the eigenvectors. We find ker(A − 2I) = span{(1, 0, 1)} and

ker(A + I) = span{(1,−3, 4)}. �
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10. Matrices with Respect to a Basis

Let V be a vector space of dimension n. Let X = {x1, . . . , xn} be a basis
for V . If v ∈ V , then there exist unique real numbers a1, . . . , an ∈ R such that
v =

∑n
i=1 aixi.

Let ΓX : V → Rn be given by ΓX(v) = (a1, . . . , an), where v =
∑n

i=1 aixi.
Recalling that any transformation is completely determined by its value on a
basis, we see that ΓX is the unique transformation from V → Rn which sends
xi to ei. Since ΓX sends a basis to a basis, it is an isomorphism.

Let T : V → V be a linear transformation. The matrix of T with respect to
the basis X is the n×n matrix B which corresponds to the linear transformation

ΓX ◦ T ◦ Γ−1
X : Rn → Rn.

We view this via the commutative diagram

V
T−−−−→ V

ΓX

y yΓX

Rn −−−−−−−→
ΓX◦T◦Γ−1

X

Rn

The columns of B represent the destinations of the basis vectors in X under
the transformation T , written in terms of the basis X.

For example, if the 4th column of B is (1, 0, 3,−2), then T (x4) = x1+3x3−x4.
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11. Matrices with Respect to a Basis in Rn

Let V = Rn and let X ⊂ Rn be a set of n linearly independent vectors in Rn.
Then X is a basis for Rn, but X is not necessarily the standard basis.

Let T : Rn → Rn be a linear transformation. Then T has a corresponding
matrix, say A.

Since Γ−1
X : Rn → Rn, it has a corresponding matrix, say C. It is easy to see

what the matrix inverse of C is; since Γ−1
X (ei) = xi, then

C = [x1 | · · · | xn].

Thus the matrix B of T with respect to the basis X is

B = C−1AC.

We may also write this as a commutative diagram

Rn A−−−−→ Rn

C
x yC−1

Rn −−−−−→
C−1AC

Rn

Let A and B be n × n matrices. We say that A and B are conjugate (or
similar) if there exists an invertble n×n matrix C such that B = C−1AC. Note
that A is invertible if and only if B is invertible.

Suppose that A and B are conjugate matrices, and the B = C−1AC. Can we
express the action of B on Rn in terms of the action of A? Since C is invertible,
the columns of C are a basis for Rn. Let X = {x1, . . . , xn} be this basis. Now
Axi may be written in terms of the basis X:

Axi =
n∑

j=1

bijxj .

Then

C−1Axi =
n∑

j=1

bijej .

On the other hand,
BC−1xi = Bei.

Thus, since BC−1 = C−1A, we have

Bei =
n∑

j=1

bijej ,

which shows that B = (bij).
In words, the columns of B represent the destinations of the nonstandard

basis vectors xi under the transformation TA (corresponding to A) when these
destinations are written in terms of the basis X.
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Example 7. Find the matrix of a linear transformation T : R2 → R2 which
reflects the plane across the line y = 2x.

Solution. If we find a nice basis, then this transformation is easy.
Let x1 = (1, 2). Then x1 is on the line y = 2x, so T (x1) = x1. Let x2 =

(−2, 1); then x2 is perpendicular to x1, since x1 · x2 = −2 + 2 = 0. Thus
T (x2) = −x2.

Thus the matrix of T with respect to this basis is

B =
[
1 0
0 −1

]
.

Let

C =
[
1 −2
2 1

]
; then C−1 =

[
1
5

2
5−2

5
1
5

]
.

Therefore

A = CBC−1 =
[−3

5
4
5

4
5

3
5

]
.

�

Proposition 7. Let T : V → V be a linear transformation.
Let v1, . . . , vn ∈ V be eigenvectors with distinct eigenvalues.
Then {v1, . . . , vn} is independent.

Proof. Let di be the eigenvalue corresponding to vi. Suppose that the set is not
independent; then one of these vectors is in the span of the previous vectors. Let
k be the smallest integer such that this is true, so that

vk = a1v1 + . . . ak−1vk−1,

where {v1, . . . , vk−1} is independent. Multiplying this equation by dk gives

dkvk =
k−1∑
i=1

ak−1vk−1,

but applying A gives

dkvk =
k−1∑
i=1

aidivi.

Subtracting these gives

0 =
k−1∑
i=1

(dk − di)aivi.

Since the di’s are distinct, this is a nontrivial dependence relation, contradicting
the fact that {v1, . . . , vk−1} is independent. �

Corollary 1. Let T : V → V be a linear transformation, where dim(V ) = n.
Let v1, . . . , vn ∈ V be eigenvectors with distinct eigenvalues.
Then

(a) {v1, . . . , vn} is a basis for V ;
(b) eig(T ) = V ;
(c) V = ⊕n

i=1eigλi
(T ).
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12. Diagonalization

Let A be an n× n matrix.
We say that A is diagonalizable if there exists a diagonal matrix D and an

invertible matrix C such that D = C−1AC.
We say that Rn has a basis of eigenvectors of A if their exist n linearly inde-

pendent eigenvectors of A. When this happens, they form a basis.

Proposition 8. Let A be an n×n matrix. Then A is diagonalizable if and only
if Rn has a basis of eigenvectors of A.

Proof. Suppose that A is diagonalizable, and let D be diagonal and C invertible
such that D = C−1AC. Then D = (dij), where dij = 0 unless i = j.

The columns of C are a basis of eigenvectors of A. They are linearly indepen-
dent because C is invertible; to see that they are eigenvectors, let xi be the ith

column of C. Then

Axi = CDC−1xi = CDei = C(diei) = diCei = dixi.

Suppose that A has a basis of eigenvectors X = {x1, . . . , xn} with corre-
sponding eigenvalues d1, . . . , dn. Form the square matrix D with di’s along the
diagonal and 0 elsewhere. Let C = [x1 | · · · | xn]. Then D is A written with
respect to the basis X, so D = C−1AC. �

Here is a criterion for diagonalizability.

Proposition 9. Let A be an n× n matrix with n distinct eigenvalues. Then A
is diagonalizable.

Proof. Each eigenvalue corresponds to a different eigenvector. These are linearly
independent. �

It is sometimes useful or necessary to consider linear transformations com-
posed with themselves. If the transformation corresponds to a diagonalizable
matrix, we are in luck.

Proposition 10. Let B = C−1AC. Then Bn = C−1AnC.

Proposition 11. Let D = (dij) be diagonal. Then Dn = (dn
ij).

Thus if A is diagonalizable and D = C−1AC, then A = CDC−1, so An =
CDnC−1 is relatively easy to compute.
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Example 8. Let

A =

−2 0 −1
0 2 0
3 0 2

 .

(a) Diagonalize A.
(b) Find A8.

Solution. The characteristic polynomial of A is

χA(λ) = (−2− λ)[(2− λ)2] + 3(2− λ)

= [(−1)(2 + λ)(2− λ) + 3](2− λ)

= [λ2 − 1](2− λ)

= (λ + 1)(λ− 1)(2− λ).

Thus the eigenvalues are 1, 2, and −1. Corresponding eigenvectors are x1 =
(−1, 0, 3), x2 = (0, 1, 0), and x3 = (−1, 0, 1). Let C = [x1 | x2 | x3]. Then

D =

1 0 0
0 2 0
0 0 −1

 ; where D = C−1AC and C−1 =
1
2

 1 0 1
0 1 0
−3 0 −1

 .

Thus A8 = CD8C−1 is easy to compute. Try this.
In this particular example, simply squaring A will reveal that something nice

happens, which explains the result above (if you tried it). �

13. Finding Eigenvalues of a Linear Transformation

Let V be an arbitrary finite dimensional vector space of dimension n. We turn
to the question to finding eigenvalues of a linear transformation T : V → V . By
definition, the eigenvalues of T should not depend on any particular basis we
select for V .

Select an ordered basis X = {x1, . . . , xn} for V . If we know the value of T on
each of the basis vectors xi, we can find the matrix A of X with respect to this
basis; A is the matrix corresponding to the transformation

ΓX ◦ T ◦ Γ−1
X : Rn → Rn.

Then we can compute the characteristic polynomial det(A−λI) and attempt to
find its roots; these roots should be our eigenvalues.

The matrix A, however, depends on the basis X we chose for V . The question
arises as to whether or not we get the same result if we choose a different basis
for V . To see that we do get the same result, we formulate two propositions.
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Proposition 12. Let V be a finite dimensional vector space of dimension n.
Let T : V → V be a linear transformation. Let X and Y be ordered bases for
V . Let A be the matrix of T with respect to X. Let B be the matrix of T with
respect to Y . Then there exists a matrix C such that B = C−1AC.

Proof. By definition of the matrix of a transformation with respect to a basis,
we know that A is the matrix corresponding to the transformation ΓX ◦ T ◦Γ−1

X

and the B is the matrix corresponding to the transformation ΓY ◦ T ◦ Γ−1
Y . Let

C be the matrix corresponding to the transformation ΓX ◦Γ−1
Y : Rn → Rn. Note

that C−1 corresponds to Γ−1
Y ◦ ΓX . Then

ΓY ◦ T ◦ Γ−1
Y = (ΓY ◦ Γ−1

X ) ◦ (ΓX ◦ T ◦ Γ−1
X ) ◦ (ΓX ◦ Γ−1

Y );

thus B = C−1AC. �

This propostion states that matrices of the same transformation with respect
to different bases are conjugate. Diagrams help explain this; the transformation
diagram

Rn
ΓX◦T◦Γ−1

X−−−−−−−→ Rn

ΓX

x xΓX

V
T−−−−→ V

ΓY

y yΓY

Rn −−−−−−−→
ΓY ◦T◦Γ−1

Y

> Rn

is converted into the matrix diagram

Rn A−−−−→ Rn

C
x yC−1

Rn −−−−−−−→
B=C−1AC

Rn

in a manner identical to a change of basis within Rn. It is not hard to see what
C is; its columns are the destinations in Rn of the ordered basis Y under the
transformation ΓX .
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Proposition 13. Let V be a finite dimensional vector space of dimension n.
Let T : V → V be a linear transformation. Let X and Y be ordered bases for
V . Let A be the matrix of T with respect to X. Let B be the matrix of T with
respect to Y . Then χA(λ) = χB(λ).

Proof. We compute

χB(λ) = det(B − λI)

= det(C−1AC − λI)

= det(C−1AC − λC−1IC)

= det(C−1(A− λI)C)

= det(C−1)det(A− λI)det(C)

= det(A− λI)

= χA(λ).

�

This says that we can think of the characteristic polynomial as an invariant
of a transformation as opposed to an invariant of a matrix which changes as
the basis changes. This also tells us that we can find the eigenvalues of a linear
transformation by selecting any basis and computing the eigenvalues with repect
to that basis.

Let V be a finite dimensional vector space and let T : V → V be a linear
transformation. The characteristic polynomial of T is χT (λ) = det(A − λI),
where A is the matrix of T with respect to any basis.
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